

DEFINING EMI SOLUTIONS

www.schlegelemi.com

NORTH AMERICA

Schlegel Electronic Materials, Inc.

1600 Lexington Ave

Suite 236A Rochester NY 14606

Tel No: +1 585-643 2000

Fax No: +1 585-427 7216

Email: schlegelemi.na@schlegelemi.com

EUROPE

Schlegel Electronic Materials, byba

Slijpesteenweg 28

8432 Middelkerke (Leffinge)

Belgium

Tel No: +32 59 560 270

Fax No: +32 59 560 271

Email: schlegelbe@schlegelemi.com

ASIA

Schlegel Electronic Materials Asia Limited

Unit3, 3/F, Block A, New Trade Plaza, 6 On Ping Street, Shatin, N.T., Hong Kong

Tel No: +852-2686 9872 Fax No: +852-2686 9728

Email: schlegelemi@emeigroup.com

Schlegel (Dongguan) Electronics Limited

No. 8 Qiaoxin Road, Qiaotou, Dongguan,

Guangdong, P.R. China Postal Code: 523525 Tel No: +86-769-8356 5686

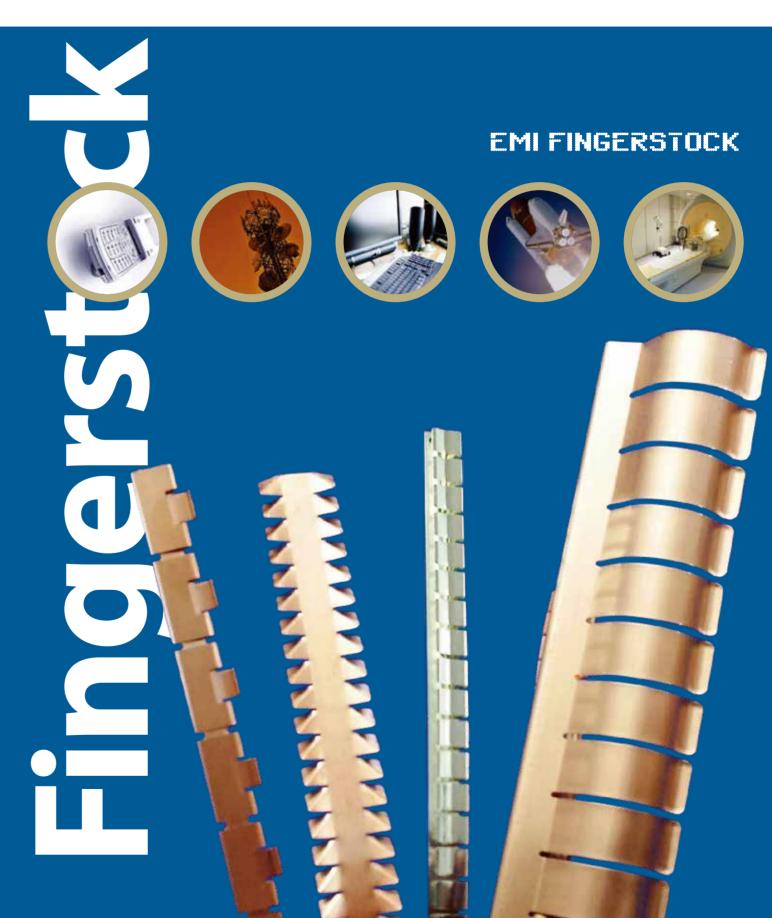
Fax No: +86-769-8334 5656

Email: schlegelemi@emeigroup.com

Schlegel (Shanghai) Electronics Limited

4/F., 79 Parts, 111 Meisheng Road, F.T.Z., Pudong, Shanghai, China Postal Code: 200131

Tel No: +86-21-5868 3383 Fax No: +86-21-5868 3386


Email: schlegelemi@emeigroup.com

Taiwan Schlegel Electronics Limited

No. 99, Alley 3, Lane 182, Section 2 Wenhua Road,

Banqiao District
Postal Code: 22044
Tel No: +886-2-8258 5148
Fax No: +886-2-8258 5149

Email: schlegelemi@emeigroup.com

SEM'S FINGERSTOCK GASKETS

Think Schlegel EMI for Shielding

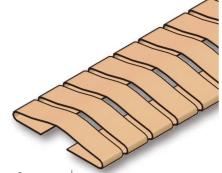
As the originator of the fabric-clad foam EMI shielding technology, Schlegel EMI is the industry's most trusted name.
We continue to set the standard for quality and innovation, designing advanced solutions for a wide range of applications. And our worldwide locations ensure that you get what you need, when and where you need it.

Modern electronic equipment often requires EMI Gaskets to avoid radiating EMI/RFI and to prevent susceptibility to outside sources of EMI/RFI. Maintaining electromagnetic compatibility can be an increasing challenge for the designers of today's electronic and electrical products.

Schlegel Electronic Materials, Inc. (SEM), the preeminent manufacturer of fabric over foam EMI shielding products for the computer, telecommunications, and electronics industries, offers a full range of EMI shielding products—including gaskets, I/O backplane shielding gaskets, and highly conductive envelopes, tapes and laminates. SEM is now proud to introduce a complete line of quality beryllium copper (BeCu) EMI Gaskets. The addition of BeCu Gaskets to SEM's extensive portfolio of shielding products allows SEM to be your exclusive EMI shielding supplier, to help you meet or exceed your global requirements for electromagnetic compatibility (EMC).

The mechanical spring characteristics of BeCu EMI Gaskets offer superior shielding effectiveness. These gaskets offer consistent performance and yield superb electrical spring contact within this industry.

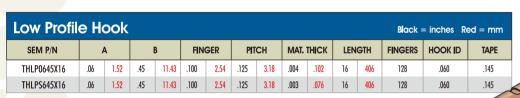
SEM provides all the popular standard styles and sizes of BeCu gaskets. These gaskets operate in spaces from .010 inches up to .500 inches. SEM also offers many styles of soft gaskets that provide the low compression force needed in many applications. Custom spring contacts and gaskets are also available.


Table of Contents

Introduction	2
Low Profile & PCI Series Gaskets	4
Adhesive Mount (AH) and Dome Top (DT, D) Series Gaskets	5
Dome Top Solid Series (DTS) and Slot Mount Series Gaskets	6
Slot Mount Series Gaskets (RH)	7
Slot Mount Series Gaskets (AT)	8
Folded Series Gaskets (FS, FSH)	9
Folded Series Gaskets (FSC, FSV)	10
Folded Series Gaskets (FSD)	11
Twist Series (T, TV)	12
Twist Series (T2, UT, UT3)	13
Clip-On Series Gaskets	. 14-1
Contact Series	19-2
Pin D Connectors	22-2
Application of Fingerstock Gaskets	24
Ordering Information & Adhesive Mounting of EMI Gaskets	
Metals Galvanic Compatibility Chart	26
Compression / Deflection Performance	27

Low Profile & PCI Series

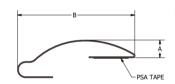
GASKETS



MOUNTING OPTIONS

Tape The low profile series gaskets incorporate design features that allow for some of the lowest compression forces in the industry, while achieving high performance shielding effectiveness. These gaskets are ideally suited for small aperture applications.

XX - Select material/finish (see page 25)



MOUNTING OPTIONS

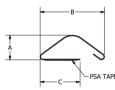
■ Tape

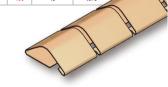
XX - Select material/finish (see page 25)

High performance Compact PCI Gaskets designed for easy card insertion in rack mount applications. This gasket is available in two different sizes to accommodate different customer extrusions. They are available in both Beryllium Copper and Stainless Steel.

PCI Serie	S													Black	= inch	es Re	ed = mm
SEM P/N		A		В	(С		D	FIN	GER	РΠ	СН	MAT.	THICK	LEN	GTH	FINGERS
TPCI0719X4.6	.07	1.78	.18	4.57	.05	1.27	.01	.25	.180	4.57	.200	5.08	.002	.051	4.60	117	23
TPCI0719X9.0	.07	1.78	.18	4.57	.05	1.27	.01	.25	.180	4.57	.200	5.08	.002	.051	9.00	229	45
TPCl0719X14.4	.07	1.78	.18	4.57	.05	1.27	.01	.25	.180	4.57	.200	5.08	.002	.051	14.40	366	72
TPCIS719X4.6	.07	1.78	.18	4.57	.05	1.27	.01	.25	.180	4.57	.200	5.08	.002	.051	4.60	117	23
TPCIS719X9.0	.07	1.78	.18	4.57	.05	1.27	.01	.25	.180	4.57	.200	5.08	.002	.051	9.00	229	45
TPCIS719X14.4	.07	1.78	.18	4.57	.05	1.27	.01	.25	.180	4.57	.200	5.08	.002	.051	14.40	366	72
TPCI0819X4.6	.07	1.78	.19	4.83	.05	1.27	.02	.51	.180	4.57	.200	5.08	.002	.051	4.60	117	23
TPCI0819X9.0	.07	1.78	.19	4.83	.05	1.27	.02	.51	.180	4.57	.200	5.08	.002	.051	9.00	229	45
TPCI0819X14.4	.07	1.78	.19	4.83	.05	1.27	.02	.51	.180	4.57	.200	5.08	.002	.051	14.40	366	72
TPCIS819X4.6	.07	1.78	.19	4.83	.05	1.27	.02	.51	.180	4.57	.200	5.08	.002	.051	4.60	117	23
TPCIS819X9.0	.07	1.78	.19	4.83	.05	1.27	.02	.51	.180	4.57	.200	5.08	.002	.051	9.00	229	45
TPCIS819X14.4	.07	1.78	.19	4.83	.05	1.27	.02	.51	.180	4.57	.200	5.08	.002	.051	14.40	366	72
Directional Force	_ [MOUNTIN OPTIONS Extrusio	-	X - Seleci	t materia	l/finish (s	ee page	25)					B-	<u> </u>	Ā		5

Adhesive Mount & Dome Top Series


GASKETS

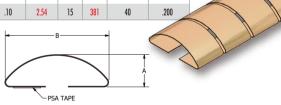

Adhesiv	е М	oun	t Se	eries	AH									Bio	ack = ind	ches Re	ed = m	m C	omp = Cor	npressed
SEM P/N		A		В	(С	FIN	GER	PIT	СН	MAT.	THICK	COMP	WIDTH	СОМР	HEIGHT	LEN	GTH	FINGERS	TAPE
TAH01132X16	.11	2.79	.32	8.13	.20	5.08	.170	4.32	.187	4.75	.003	.076	.39	9.91	.04	1.02	16	406	86	.145
TAHS1132X16	.11	2.79	.32	8.13	.20	5.08	.170	4.32	.187	4.75	.002	.051	.39	9.91	.04	1.02	16	406	86	.145
TAH01337X16	.13	3.30	.37	9.40	.21	5.33	.225	5.72	.250	6.35	.003	.076	.51	12.95	.05	1.27	16	406	64	.145
TAHS1337X16	.13	3.30	.37	9.40	.21	5.33	.225	5.72	.250	6.35	.002	.051	.51	12.95	.05	1.27	16	406	64	.145
TAH01438X16	.14	3.56	.38	9.65	.20	5.08	.343	8.71	.375	9.53	.004	.102	.53	13.46	.05	1.27	16	406	43	.145
TAH02260X16	.22	5.59	.60	15.24	.28	7.11	.344	8.74	.375	9.53	.005	.127	.73	18.54	.09	2.29	16	406	43	.200
TAHS2260X16	.22	5.59	.60	15.24	.28	7.11	.344	8.74	.375	9.53	.003	.076	.73	18.54	.09	2.29	16	406	43	.200
TAH03278X16	.32	8.13	.78	19.81	.45	11.43	.344	8.74	.375	9.53	.004	.102	.98	24.89	.12	3.05	16	406	43	.375
TAHS3278X16	.32	8.13	.78	19.81	.45	11.43	.344	8.74	.375	9.53	.003	.076	.98	24.89	.12	3.05	16	406	43	.375

MOUNTING OPTIONS ■ Tape The AH series gaskets are adhesive mounted general-purpose gaskets used in both compression and wiping applications. Sizes range from .11" (2.8mm) to .32" (8.1 mm) in height. Applications include electronic enclosures, shielded cabinets, and MRI chamber doors.

XX - Select material/finish (see page 25)

The Dome Top Gaskets are known for their large surface area for electrical contact and smooth wiping action. Also available in a solid top profile allowing for omni-directional wiping. Together with the Slot Mount Series, the Dome Top Gaskets are a mainstay in the enclosure/chassis industries. Commonly mounted with adhesive tape.

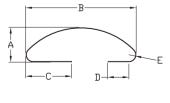
Dome To	op (Serie	es D	T								Blo	ick = ind	ches Re	d = m	m C	omp = Cor	npressed
SEM P/N	,	A		В	FIN	GER	PİT	СН	MAT.	THICK	COMP	WIDTH	COMP	HEIGHT	LEN	GTH	FINGERS	TAPE
TDT01135X15	.11	2.79	.35	8.89	.169	4.29	.187	4.75	.003	.076	.38	9.65	.06	1.52	15	381	80	.100
TDTS1135X15	.11	2.79	.35	8.89	.169	4.29	.187	4.75	.002	.051	.38	9.65	.06	1.52	15	381	80	.100
TDT01445X15	.14	3.56	.45	11.43	.228	5.79	.250	6.35	.003	.076	.51	12.95	.07	1.78	15	381	60	.100
TDTS1445X15	.14	3.56	.45	11.43	.228	5.79	.250	6.35	.002	.051	.51	12.95	.07	1.78	15	381	60	.100
TDT02262X15	.22	5.59	.62	15.75	.345	8.76	.375	9.53	.004	.102	.76	19.30	.10	2.54	15	381	40	.200
TDTS2262X15	.22	5.59	.62	15.75	.345	8.76	.375	9.53	.003	.076	.76	19.30	.10	2.54	15	381	40	.200

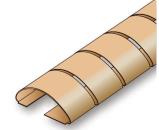

OPTIONS

Tape

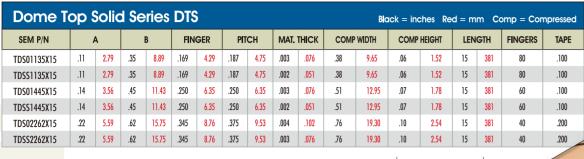
The Dome Top gaskets have fully independent fingers that are adhesive mounted.

Their smooth curve provides a large area for electrical contact and smooth

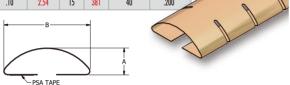

XX - Select material/finish (see page 25



Dome To	op S	Serie	es D										Blac k	= inch	es Re	d = mr	n Co	mp = 0	Compressed
SEM P/N	1	4	ı	В	(C	ı)		E	FIN	GER	PIT	СН	MAT.	THICK	LENG	STH	FINGERS
*TDA01135 X16	.11	2.80	.35	8.90	.15	3.70	.090	2.3	.020	.510	.17	4.29	.19	4.75	.003	.08	16	408.04	86



MOUNTING | Options



OPTIONS

Tape

The Dome Top "Solid" Series gaskets have a strip that connects each finger along the top. This allows for unique angular wiping action without snagging. Other features are the same as the Dome Top Series.

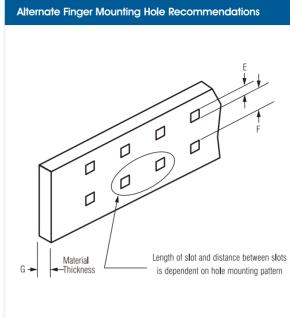
XX - Select material/finish (see page 25)

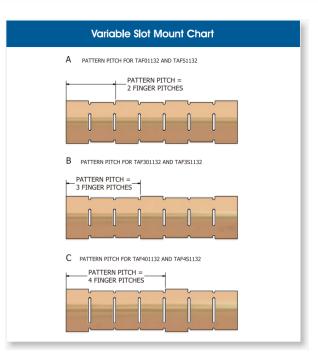
Slot Mount Series

GASKETS

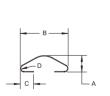
Slot mount gaskets are a standard in the electronic enclosure industry. These gaskets are used in shorter lengths as ESD contacts and longer lengths as EMI gaskets, which clip into slots or slide onto mounted tracks.

Alternate	e Fir	ngei	r Slo	t M	oun	ıt														Black	= incl	hes Re	ed = mm
SEM P/N	,	4	ı	В	(О	[)	* Recom	E mended	* Recomm	F nended	* Recom	G mended	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS
TAF01132X16	.11	2.79	.32	8.13	.08	2.03	.02	.51	.09	2.29	.26	6.60	.04	1.02	.169	4.29	.187	4.75	.004	.102	16	406	85
*TAFA1132X16	.11	2.80	.32	8.13	.09	2.16	.02	.51	-	-	-	-	-	-	.169	4.29	.187	4.75	.003	.08	16	403.29	85
*TAFB1132X16	.11	2.80	.32	8.13	.09	2.16	.02	.51	-	-	-	-	-	-	.169	4.29	.187	4.75	.002	.06	16	403.29	85
TAF301132X16	.11	2.79	.32	8.13	.08	2.03	.02	.51	.09	2.29	.26	6.60	.04	1.02	.169	4.29	.187	4.75	.004	.102	16	406	85
*TAF3T1132X16	.11	2.80	.32	8.13	.09	2.16	.02	.51	-	-	-	-	-	-	.169	4.29	.187	4.75	.003	.08	16	403.29	85
TAF401132X16	.11	2.79	.32	8.13	.08	2.03	.02	.51	.09	2.29	.26	6.60	.04	1.02	.169	4.29	.187	4.75	.004	.102	16	406	85
TAFS1132X16	.11	2.79	.32	8.13	.08	2.03	.02	.51	.09	2.29	.26	6.60	.04	1.02	.169	4.29	.187	4.75	.002	.051	16	406	85
TAF3S1132X16	.11	2.79	.32	8.13	.08	2.03	.02	.51	.09	2.29	.26	6.60	.04	1.02	.169	4.29	.187	4.75	.002	.051	16	406	85
TAF4S1132X16	.11	2.79	.32	8.13	.08	2.03	.02	.51	.09	2.29	.26	6.60	.04	1.02	.169	4.29	.187	4.75	.002	.051	16	406	85
TAF02260X16	.22	5.59	.60	15.24	.14	3.56	.04	1.02	.14	3.56	.52	13.21	.07	1.78	.250	6.35	.282	7.16	.005	.127	16	406	57
*TAFA2260X16	.22	5.59	.60	15.24	.13	3.30	.04	1.02	-	-	-	-	-	-	.250	6.35	.282	7.16	.005	.127	16	407.3	57
TAF302260X16	.22	5.59	.60	15.24	.14	3.56	.04	1.02	.14	3.56	.52	13.21	.07	1.78	.250	6.35	.282	7.16	.005	.127	16	406	58
TAFS2260X16	.22	5.59	.60	15.24	.14	3.56	.04	1.02	.14	3.56	.52	13.21	.07	1.78	.250	6.35	.282	7.16	.003	.076	16	406	57
TAF3S2260X16	.22	5.59	.60	15.24	.14	3.56	.04	1.02	.14	3.56	.52	13.21	.07	1.78	.250	6.35	.282	7.16	.003	.076	16	406	58
*TAF01337X16	.13	3.30	.37	9.40	.09	2.16	.02	.51	-	-	-	-	-	-	.226	5.75	.25	6.35	.003	.08	16	405.8	64
*TAFB1537X059	.15	3.70	.37	9.40	.09	2.16	.02	.51	-	-	-	-	-	-	.177	4.50	.205	5.2	.003	.08	.59	14.9	3
*TAFC1537X059	.15	3.70	.37	9.40	.09	2.16	.02	.51	-	-	-	-	-	-	.177	4.50	.205	5.2	.002	.06	.59	14.9	3
*TAFD1537X059	.15	3.70	.37	9.40	.09	2.16	.02	.51	-	-	-	-	-	-	.177	4.50	.205	5.2	.004	.1	.59	14.9	3
*TAF01132X054	.11	2.80	.32	8.13	.09	2.16	.02	.51	-	-	-	-	-	-	.169	4.29	.187	4.75	.003	.08	.54	13.79	3

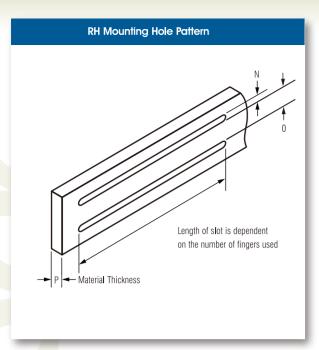

MOUNTIN OPTIONS *May vary depending on application

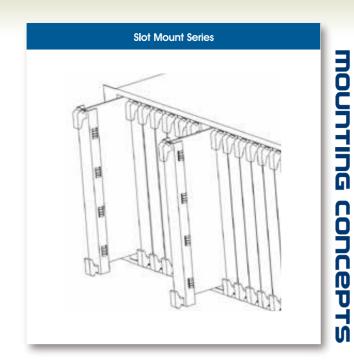

XX - Select material/finish (see page 25)

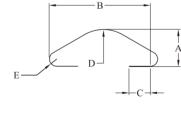
MOUNTING CONCEPTS



SEM P/N		A		В	(:	ı)	Recom	N mended	*	O mended	*	P mended	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS
TRH01128X16	.11	2.79	.28	7.11	.08	2.03	.02	.51	.09	2.29	.22	5.59	.04	1.02	.169	4.29	.187	4.75	.003	.076	16	406	86
TRHS1128X16	.11	2.79	.28	7.11	.08	2.03	.02	.51	.09	2.29	.22	5.59	.04	1.02	.169	4.29	.187	4.75	.002	.054	16	406	86
TRH01132X16	.11	2.79	.32	8.13	.09	2.29	.02	.51	.09	2.29	.26	6.60	.04	1.02	.169	4.29	.187	4.75	.003	.076	16	406	86
*TRHA1132X16	.11	2.79	.32	8.13	.085	2.16	.02	.51	-	-	-	-	-	-	.169	4.29	.187	4.75	.003	.08	16	408.04	86
*TRHB1132X16	.11	2.79	.32	8.13	.085	2.16	.02	.51	-	-	-	-	-	-	.169	4.29	.187	4.75	.002	.06	16	408.04	86
TRHS1132X16	.11	2.79	.32	8.13	.09	2.29	.02	.51	.09	2.29	.26	6.60	.04	1.02	.169	4.29	.187	4.75	.002	.054	16	406	86
TRH01330X16	.13	3.30	.30	7.62	.09	2.29	.03	.76	.09	2.29	.25	6.35	.05	1.27	.169	4.29	.187	4.75	.004	.102	16	406	86
TRH01337X16	.13	3.30	.37	9.40	.09	2.29	.02	.51	.09	2.29	.31	7.87	.04	1.02	.225	5.72	.250	6.35	.003	.076	16	406	64
*TRHA1337X16	.13	3.3	.37	9.4	.085	2.16	.02	.51	-	-	-	-	-	-	.225	5.72	.250	6.35	.003	.08	16	405.77	64
TRHS1337X16	.13	3.30	.37	9.40	.09	2.29	.02	.51	.09	2.29	.31	7.87	.04	1.02	.225	5.72	.250	6.35	.002	.054	16	406	64
TRH02260X16	.22	5.59	.60	15.24	.14	3.56	.04	1.02	.14	3.56	.52	13.21	.06	1.52	.250	6.23	.282	7.16	.005	.127	16	406	57
TRHS2260X16	.22	5.59	.60	15.24	.14	3.56	.04	1.02	.14	3.56	.52	13.21	.06	1.52	.250	6.35	.282	7.16	.003	.076	16	406	57
*TRH01543X16	.15	3.88	.43	11	.11	2.7	.02	.57	-	-	-	-	-	-	.209	5.30	.236	6	.003	.08	16	407.3	68


MOUNTING OPTIONS Slot


^May vary depending on application

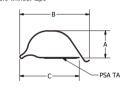


Slot Mount Series (AT) Black = inches Red = mm Comp = Compressed MAT. THICK LENGTH *TAT21132X16 .11 | 2.79 | .32 | 8.13 | .09 | 2.16 | .11 | 2.79 | .02 | .51 .17 4.29 .19 4.75 .003 .08 16 408.04

MOUNTING OPTIONS XX - Select material/finish (see page 25)

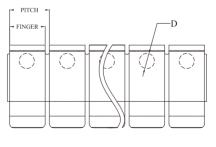
Folded Series

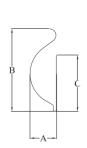
GASKETS

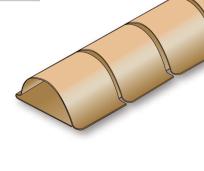

SEM's Folded Gasket series are industry standard, general-purpose gaskets that allow a large range of deflection and compression forces. These gaskets are available with or without tape for alternate attachment methods. Also available in a snag-free version where, under compression, the leading edge of the gasket slides into an extended and folded base which prevents possible damage to

Folded	Seri	es F	S											Black =	= inch	es Re	d = m	m Co	omp = Con	npressed
SEM P/N		A	ı	В	(С	FIN	GER	PIT	СН	MAT.	THICK	CC LEN	MP GTH	CC	MP GHT	LEN	GTH	FINGERS	TAPE
TFS01128X16	.11	2.79	.28	7.11	.24	6.10	.170	4.32	.188	4.78	.003	.076	.37	9.40	.07	1.78	16	406	85	.145
TFS01128X300	.11	2.79	.28	7.11	.24	6.10	.170	4.32	.188	4.78	.003	.076	.37	9.40	.07	1.78	300	7620	1596	.145
TFSS1128X16	.11	2.79	.28	7.11	.24	6.10	.170	4.32	.188	4.78	.002	.051	.37	9.40	.07	1.78	16	406	85	.145
TFSS1128X300	.11	2.79	.28	7.11	.24	6.10	.170	4.32	.188	4.78	.002	.051	.37	9.40	.07	1.78	300	7620	1596	.145
TFS01437X16	.14	3.56	.37	9.40	.32	8.13	.228	5.79	.250	6.35	.003	.076	.50	12.70	.10	2.54	16	406	64	.200
TFS01437X300	.14	3.56	.37	9.40	.32	8.13	.228	5.79	.250	6.35	.003	.076	.50	12.70	.10	2.54	300	7620	1200	.200
TFSS1437X16	.14	3.56	.37	9.40	.31	7.87	.228	5.79	.250	6.35	.002	.051	.50	12.70	.10	2.54	16	406	64	.200
TFS022360X24	.23	5.84	.60	15.24	.50	12.70	.343	8.71	.375	9.53	.004	.102	.77	19.56	.12	3.05	24	610	64	.250
TFS02360X300	.23	5.84	.60	15.24	.50	12.70	.343	8.71	.375	9.53	.004	.102	.77	19.56	.12	3.05	300	7620	800	.250
TFS02578X24	.25	6.35	.78	19.81	.53	13.46	.335	8.51	.375	9.53	.005	.127	.94	23.88	.15	3.81	24	610	64	.375
TFS02578X300	.25	6.35	.78	19.81	.53	13.46	.340	8.64	.375	9.53	.005	.127	.94	23.88	.15	3.81	300	7620	800	.375
TFSS2578X24	.25	6.35	.78	19.81	.53	13.46	.335	8.51	.375	9.53	.003	.076	.94	23.88	.15	3.81	24	610	64	.375
TFSS2578X300	.25	6.35	.78	19.81	.53	13.46	.335	8.51	.375	9.53	.003	.076	.94	23.88	.15	3.81	300	7620	800	.375
TFS041113X12	.41	10.41	1.13	28.70	.80	20.32	.460	11.68	.500	12.70	.007	.178	1.94	49.28	.23	5.84	12	305	24	.375

The SEM FS gaskets are industry standard, general-purpose gaskets that allow a

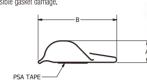

large range of deflection and compression forces. These gaskets are available without tape for alternate attachment methods. Consult factory for information.




Folded S	erie	s FS	Н											Bla	ck = iı	nches	Red = mm
SEM P/N	1	4	- 1	В	(2	ı)	FING	SER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS
*TFSH1128X16	.11	2.80	.28	7.10	.23	5.80	.059	1.50	.170	4.32	.189	4.78	.003	.08	16	406.30	85
*TFSH1437X16	.14	3.60	.37	9.40	.31	7.90	.063	1.60	.228	5.79	.250	6.35	.003	.08	16	406.40	64
*TFSH2360X16	.23	5.80	.60	15.20	.50	12.70	.079	2.00	.343	8.72	.375	9.53	.004	.10	16	406.40	43
*TFSA2578X16	.25	6.40	.78	19.80	.53	13.50	.142	3.60	.335	8.51	.375	9.53	.004	.10	16	409.79	43
*TFSB2578X16	.25	6.40	.78	19.80	.53	13.50	.142	3.60	.335	8.51	.375	9.53	.008	.20	16	409.79	43
*TFSC2578X16	.25	6.40	.78	19.80	.94	24.00	.142	3.60	.335	8.51	.375	9.53	.004	.10	16	409.79	43
*TFSH4111X16	.41	10.40	1.13	28.70	.78	19.80	.142	3.60	.460	11.68	.500	12.70	.007	.18	16	406.40	32

XX - Select material/finish (see page 25)

Folded S	erie	s FS	C											Blac	k = inches F	Red = mm
SEM P/N	,	4		В	FIN	GER	PI	ГСН	MAT.	THICK	CO	MP GHT	LEN	GTH	FINGERS	TAPE
TFSC0825X16	.08	2.03	.25	6.35	.170	4.32	.188	4.78	.003	.076	.048	1.22	16	406	85	.145
TFSC1451X16	.14	3.56	.51	12.95	.228	5.79	.250	6.35	.003	.076	.100	2.54	16	406	64	.375
TFSZ1451X16	.14	3.56	.51	12.95	.228	5.79	.250	6.35	.002	.051	.100	2.54	16	406	64	.375
TFSC2376X24	.23	5.84	.76	19.30	.343	8.64	.375	9.53	.004	.102	.115	2.92	24	610	64	.375



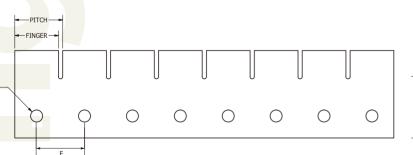
OPTIONS

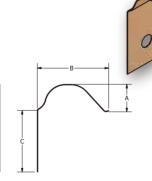
Tape

The FSC was created to provide snag free gaskets with FS gasket features. The base of the gasket is extended from the mounting area and then folded up, over, down, and then comes to rest over the leading edge of the formed spring. Under compression, the leading edge of the gasket slides under and is "captured." This "no snag" feature is also used to prevent possible gasket damage.

XX - Select material/finish (see page 25)

Folded Se	eries	FS\	/													Blac	k = in	ches	Red =	mm	Comp	o = Co	mpressed
SEM P/N		A		В		С		D		E	FIN	GER	PIT	СН	MAT.	THICK		MP DTH		MP GHT	LEN	GTH	FINGERS
TFSV1128X16	.11	2.79	.28	7.11	.24	6.10	.06	1.52	.188	4.78	.170	4.32	.188	4.78	.003	.076	.37	9.40	.07	1.78	16	406	85
*TFS01128X16	.11	2.8	.28	7.1	.22	5.7	.06	1.5	.189	4.78	.166	4.22	.189	4.78	.003	.08	-	-	-	-	16	406.3	85
TFS21128X16	.11	2.79	.28	7.11	.24	6.10	.06	1.52	.188	4.78	.170	4.32	.188	4.78	.002	.051	.37	9.40	.07	1.78	16	406	85
*TFSV1436X16	.14	3.6	.37	9.4	.32	8.13	.12	3	.250	6.35	.228	5.79	.250	6.35	.003	.08	-	-	-	-	16	406.4	64
TFSV1437X16	.14	3.66	.37	9.40	.32	8.13	.06	1.52	.250	6.35	.228	5.79	.250	6.35	.003	.076	.50	12.70	.10	2.54	16	406	64
TFS21437X16	.14	3.66	.37	9.40	.32	8.13	.06	1.52	.250	6.35	.228	5.79	.250	6.35	.002	.051	.50	12.70	.10	2.54	16	406	64
TFSV2360X24	.23	5.84	.60	15.24	.50	12.70	.08	2.03	.375	9.53	.343	8.71	.375	9.50	.004	.102	.77	19.56	.12	3.05	24	610	64
TFSV2578X24	.25	6.35	.78	19.81	.50	12.70	.14	3.56	.375	9.53	.335	8.51	.375	9.50	.005	.127	.94	23.88	.15	3.81	24	610	64
TFS22578X24	.25	6.35	.78	19.81	.50	12.70	.14	3.56	.375	9.53	.335	8.51	.375	9.50	.003	.076	.94	23.88	.15	3.81	24	610	64
*TFSV2674X16	.26	6.7	.74	18.7	.34	8.7	.14	3.6	.375	9.53	.335	8.51	.375	9.53	.005	.127	-	-	-	-	16	409.79	43
TFSV41113X12	.41	10.41	1.13	28.70	.80	20.32	.14	3.56	.500	12.70	.460	11.68	.500	12.70	.007	.178	1.94	49.28	.23	5.84	12	305	24
*TFSV42113X16	.42	10.7	1.13	28.7	.75	19.05	.14	3.6	.500	12.70	.460	11.68	.500	12.70	.007	.18	-	-	-	-	16	406.4	32

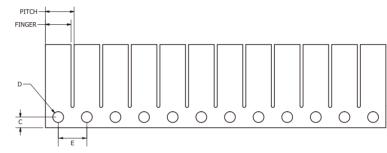


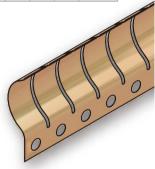

MOUNTING
OPTIONS

Tape
Rivet

The FSV is an FS gasket that has the base bent at a right angle to the curve of the spring form, with all the other features of the FS gasket maintained. Tape optional – please consult factory.

XX - Select material/finish (see page 25)


Folded So	erie	s FS	D													Blac	k = in	ches	Red =	mm	Comp	= Co	mpressed
SEM P/N	,	4	ı	В	(С	ı)	ı	E	FIN	GER	PIT	СН	MAT.	THICK	CC	MP OTH	CC	MP GHT	LEN	GTH	FINGERS
TFSD2599X24	.25	6.35	1.09	27.69	.16	4.06	.14	3.56	.38	9.65	.335	8.51	.375	9.53	.005	.127	1.27	32.26	.15	3.81	24	610	64
TFSD2599X300	.25	6.35	1.09	27.69	.16	4.06	.14	3.56	.38	9.65	.335	8.51	.375	9.53	.005	.127	1.27	32.26	.15	3.81	300	7620	800
TFSS2599X24	.25	6.35	1.09	27.69	.16	4.06	.14	3.56	.38	9.65	.335	8.51	.375	9.53	.003	.076	1.27	32.26	.15	3.81	24	610	64
TFSS2599X300	.25	6.35	1.09	27.69	.16	4.06	.14	3.56	.38	9.65	.335	8.51	.375	9.53	.003	.076	1.27	32.26	.15	3.81	300	7620	800
TFSD41163X24	.41	10.41	1.63	41.40	.19	4.83	.14	3.56	.50	12.70	.460	11.68	.500	12.70	.007	.178	1.90	48.26	.23	5.84	24	610	48
TFSD41163X300	.41	10.41	1.63	41.40	.19	4.83	.14	3.56	.50	12.70	.460	11.68	.500	12.70	.007	.178	1.90	48.26	.23	5.84	300	7620	600
*TFSD25110X16	.25	6.40	1.1	27.70	.16	4.1	.14	3.6	.38	9.53	.335	8.51	.375	9.53	.003	.08	-	-	-	-	16	409.79	43
*TFSD41160X16	.41	10.40	1.63	41.40	.19	4.8	.14	3.6	.50	12.70	.460	11.68	.500	12.70	.007	.18	-	-	-	-	16	406.4	32


MOUNTING OPTIONS

Tape

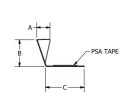
The FSD is an FS gasket with its base lying on the same plane as the curve in the spring form, with the mounting area $\,$ shortened. This mounting is often modified for custom applications.

Twist Series

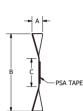
GASKETS

The Twist series gaskets are designed for demanding compression applications, This series can compress to material thickness and provide excellent shielding performance. Profiles include standard flat, right angle, double twist, and clip-on.

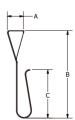
Twist Serie	es T									Blac	k = ind	ches I	Red =	mm	Comp = Cor	npressed
SEM P/N	1	Ą		В	(С	FIN	GER	PIT	СН	MAT.	THICK	LEN	IGTH	FINGERS	TAPE
TT000320X24	.03	.76	.20	5.08	.11	2.79	.08	2.03	.095	2.41	.003	.076	24	610	253	.100
TT000320X300	.03	.76	.20	5.08	.11	2.79	.08	2.03	.095	2.41	.003	.076	300	7620	3158	.100
*TT000323X24	.03	.8	.23	5.9	.14	3.6	.08	2.03	.095	2.41	.003	.08	24	609.73	253	-
TT000323X300	.03	.76	.23	5.84	.14	3.56	.08	2.03	.095	2.41	.003	.076	300	7620	3158	.100
TT00S323X24	.03	.76	.23	5.84	.14	3.56	.08	2.03	.095	2.41	.002	.051	24	610	253	.100
TT00S323X300	.03	.76	.23	5.84	.14	3.56	.08	2.03	.095	2.41	.002	.051	300	7620	3158	.100
*TT000630X24	.07	1.8	.30	7.62	.15	3.81	.15	3.81	.165	4.19	.003	.08	24	611.74	146	-
TT000630X300	.07	1.78	.30	7.62	.15	3.81	.15	3.81	.165	4.19	.003	.076	300	7620	1818	.100
TT00S630X24	.07	1.78	.30	7.62	.15	3.81	.15	3.81	.165	4.19	.002	.051	24	610	146	.145
TT00S630X300	.07	1.78	.30	7.62	.15	3.81	.15	3.81	.165	4.19	.002	.051	300	7620	1818	.145
*TT000634X24	.07	1.8	.34	8.64	.18	4.63	.15	3.81	.165	4.19	.003	.08	24	611.74	146	-
TT000634X300	.07	1.78	.34	8.64	.18	4.57	.15	3.81	.165	4.19	.003	.076	300	7620	1818	.145
TT00S634X24	.07	1.78	.34	8.64	.18	4.57	.15	3.81	.165	4.19	.002	.051	24	610	146	.145
TT00S634X300	.07	1.78	.34	8.64	.18	4.57	.15	3.81	.165	4.19	.002	.051	300	7620	1818	.145

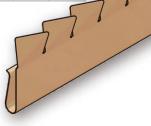


XX - Select material/finish (see page 25)


SEM P/N	4	4		В		С	FIN	GER	PIT	СН	MAT.	тніск	LEN	IGTH	FINGERS	TAPE
TTV00323X24	.03	.76	.08	2.03	.16	4.06	.08	2.03	.095	2.41	.003	.076	24	610	253	.100
*TTV00320X24	.03	.80	.07	2	.15	3.8	.08	2.03	.095	2.41	.003	.08	24	609.73	253	-
TTV00323X30	.03	.76	.08	2.03	.16	4.06	.08	2.03	.095	2.41	.003	.076	300	7620	3158	.100
TTV03323X24	.03	.76	.08	2.03	.30	7.62	.08	2.03	.095	2.41	.003	.076	24	610	253	.250
TTV0S323X24	.03	.76	.08	2.03	.16	4.06	.08	2.03	.095	2.41	.002	.051	24	610	253	.100
TTV30S323X300	.03	.76	.08	2.03	.30	7.62	.08	2.03	.095	2.41	.002	.051	300	7620	3158	.250
TTV00634X24	.07	1.78	.14	3.56	.20	5.08	.15	3.81	.165	4.19	.003	.076	24	610	146	.145
TTV00634X300	.07	1.78	.14	3.56	.20	5.08	.15	3.81	.165	4.19	.003	.076	300	7620	1818	.145
TTV0S634X24	.07	1.78	.14	3.56	.20	5.08	.15	3.81	.165	4.19	.002	.051	24	610	146	.145
*TTV00640X24	.07	1.8	.14	4	.18	4.63	.15	3.81	.165	4.19	.003	.08	24	611.74	146	-
TTV0S634X300	.07	1.78	.14	3.56	.20	5.08	.15	3.81	.165	4.19	.002	.051	300	7620	1818	.145

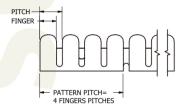
XX - Select material/finish (see page 25)

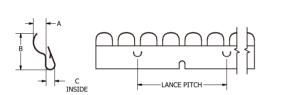



XX - Select material/finish (see page 25)

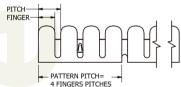
Clip-On Series

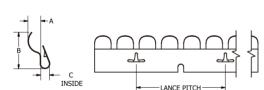
GASKETS

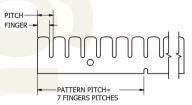

The Clip-On Gaskets are used in enclosures, shielded cabinets, and on circuit cards as ESD contacts and EMI gaskets. For edge mount applications, close attention must be given to clip size, lance requirements, deflection parameters and finger configuration. SEM provides application assistance in the development of specifications.

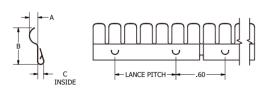

Clip-On Se	ries	С													E	lack =	= inche	es Re	d = m	m C	omp = Co	mpressed
SEM P/N	,	A		В	(С	FIN	GER	PIT	СН		ERIAL ICK		OMP DTH		MP GHT	LAN ST/	NCE ART		NCE CH	FINGERS	LANCE
TCD01030X16	.10	2.54	.30	7.62	.07	1.78	.135	3.43	.182	4.62	.005	.127	.33	8.38	.05	1.27	.341	8.66	.728	18.49	88	D
TCT01030X16	.10	2.54	.30	7.62	.07	1.78	.135	3.43	.182	4.62	.005	.127	.33	8.38	.05	1.27	.341	8.66	.728	18.49	88	T
TCD01145X16	.11	2.79	.45	11.43	.07	1.78	.147	3.73	.193	4.90	.005	.127	.47	11.94	.06	1.52	.267	6.78	.748	19.00	84	D
TCT01145X16	.11	2.79	.45	11.43	.07	1.78	.147	3.73	.193	4.90	.005	.127	.47	11.94	.06	1.52	.651	16.54	1.352	34.34	84	T

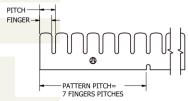
XX - Select material/finish (see page 25)

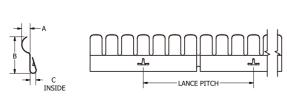

TCD01030



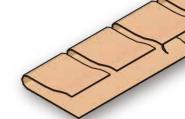

TCT01030




TCD01145

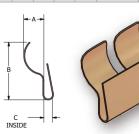


TCT01145

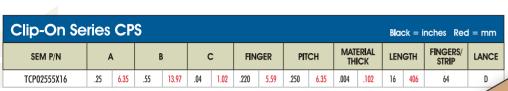


Mini-Clip Series C Black = Inches Red = mm SEM P/N A B C FINGER PITCH MATERIAL THICK LANCE START LANCE PITCH LENGTH FINGERS CLIP ID LANCE TCD40721X16 .07 1.78 .25 6.35 .03 .76 .170 4.32 .200 5.08 .003 .076 .49 12.45 1.00 25.40 16 406 80 .045 D

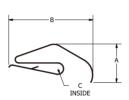
XX - Select material/finish (see page 25)



lip-On Se	eries	C													Black	c = inc	hes	Red :	= mn	ı Co	mp = Com	pressed
SEM P/N	/	Α		В	(;	FIN	GER	PIT	СН		ERIAL ICK		OMP DTH		OMP GHT	LAN ST/	NCE ART		CH	FINGERS	LANCE
TC041030X16	.10	2.54	.30	7.62	.045	1.14	.140	3.560	.187	4.750	.005	.127	.33	8.38	.05	1.27	-	-	-	-	86	n/a
TC051030X16	.10	2.54	.30	7.62	.050	1.27	.140	3.560	.187	4.750	.005	.127	.33	8.38	.05	1.27	-	-	-	-	86	n/a
TC061030X16	.10	2.54	.30	7.62	.065	1.65	.140	3.560	.187	4.750	.005	.127	.33	8.38	.05	1.27	-	-	-	-	86	n/a
TC071030X16	.10	2.54	.30	7.62	.070	1.78	.140	3.560	.187	4.750	.005	.127	.33	8.38	.05	1.27	-	-	-	-	86	n/a
TCD41030X16	.10	2.54	.30	7.62	.045	1.14	.140	3.560	.187	4.75	.005	.127	.33	8.38	.05	1.27	.5	12.7	1	25.4	86	D
TCD51030X16	.10	2.54	.30	7.62	.050	1.27	.140	3.560	.187	4.750	.005	.127	.33	8.38	.05	1.27	.5	12.7	1	25.4	86	D
TCD61030X16	.10	2.54	.30	7.62	.065	1.65	.140	3.560	.187	4.750	.005	.127	.33	8.38	.05	1.27	.5	12.7	1	25.4	86	D
TCD71030X16	.10	2.54	.30	7.62	.070	1.78	.140	3.560	.187	4.750	.005	.127	.33	8.38	.05	1.27	.5	12.7	1	25.4	86	D
TC041145X16	.11	2.79	.45	11.43	.045	1.14	.140	3.560	.187	4.750	.005	.127	.47	11.94	.06	1.52	-	-	-	-	86	n/a
TC051145X16	.11	2.79	.45	11.43	.050	1.27	.140	3.560	.187	4.750	.005	.127	.47	11.94	.06	1.52	-	-	-	-	86	n/a
TC061145X16	.11	2.79	.45	11.43	.065	1.65	.140	3.560	.187	4.750	.005	.127	.47	11.94	.06	1.52	-	-	-	-	86	n/a
TC071145X16	.11	2.79	.45	11.43	.070	1.78	.140	3.560	.187	4.750	.005	.127	.47	11.94	.06	1.52	-	-	-	-	86	n/a
TCD41145X16	.11	2.79	.45	11.43	.045	1.14	.140	3.560	.187	4.750	.005	.127	.47	11.94	.06	1.52	.5	12.7	1	25.4	86	D
TCD51145X16	.11	2.79	.45	11.43	.050	1.27	.140	3.560	.187	4.750	.005	.127	.47	11.94	.06	1.52	.5	12.7	1	25.4	86	D
TCD61145X16	.11	2.79	.45	11.43	.065	1.65	.140	3.560	.187	4.750	.005	.127	.47	11.94	.06	1.52	.5	12.7	1	25.4	86	D
TCD71145X16	.11	2.79	.45	11.43	.070	1.78	.140	3.560	.187	4.750	.005	.127	.47	11.94	.06	1.52	.5	12.7	1	25.4	86	D
TC072599X16	.25	6.35	1.09	27.69	.070	1.78	.340	8.640	.375	9.530	.005	.127	1.27	32.26	.08	2.03	-	-	-	-	43	n/a
TCD72599X16	.25	6.35	1.09	27.69	.070	1.78	.340	8.640	.375	9.530	.005	.127	1.27	32.26	.08	2.03	.5	12.7	1	25.4	43	D
TSC072599X16	.25	6.35	1.09	27.69	.070	1.78	.340	8.640	.375	9.530	.003	.076	1.27	32.26	.08	2.03	-	-	-	-	43	n/a
TSCD72599X16	.25	6.35	1.09	27.69	.070	1.78	.340	8.640	.375	9.530	.003	.076	1.27	32.26	.08	2.03	.5	12.7	1	25.4	43	D
TC122599X16	.25	6.35	1.09	27.69	.120	3.05	.340	8.640	.375	9.530	.005	.127	1.27	32.26	.08	2.03	-	-	-	-	43	n/a
TC132599X16	25	6.35	1 09	27 69	130	3 30	340	8 640	375	9 530	005	127	1 27	32 26	08	2 03	_	_	_	_	43	n/a


Consult factory for optional clip sizes and optional lance features.

Clip-On & Grounding Series


GASKETS

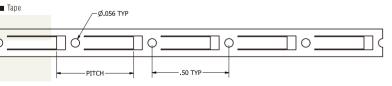
XX - Select material/finish (see page 25)

Perpendicular Shielding Gaskets

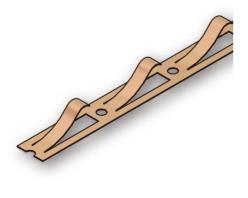
- Finger design allows for continuous contact across the length of the strip
- "D" lance provides superior retention of gasket to the mounting surface
- .80 D-clip is retained with .100 D-hole

Clip-On Se	ries	CP	G										Blac	ck = i	nches Rec	d = mm
SEM P/N	<i>A</i>	١		3	c	;	FIN	GER	PIT	СН		ER i al ICK	LEN	GTH	FINGERS/ STRIP	LANCE
TCPG0631X12	.06	1.52	.31	7.87	.04	1.02	.500	12.70	.545	13.84	.004	.102	12	305	22	D
TCPG0631X16	.06	1.52	.31	7.87	.04	1.02	.500	12.70	.545	13.84	.004	.102	16	406	29	D

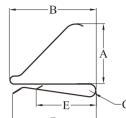
XX - Select material/finish (see page 25)

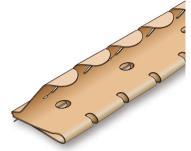

Perpendicular Electrical Grounding Strips

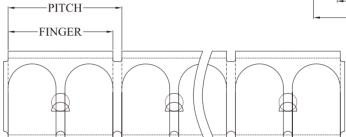
- Finger extension provides grounding from card or PCB to a backplane housing surface
 Wide clip-on area with "D" lance offers reliable retention
- .0035 material offers significant resiliency

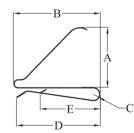


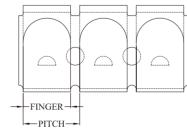
	Grounding	Sei	ries	ML							Black	= incl	nes Re	ed = mm
	SEM P/N	A			В	c	;	FIN	GER	PIT	СН		ER i al ICK	FINGERS
ľ	TML01481X16	.14	3.56	.28	7.11	.18	4.57	.080	2.03	.500	12.70	.005	.127	32
	TML01481X24	.14	3.56	.28	7.11	.18	4.57	.080	2.03	.500	12.70	.005	.127	48



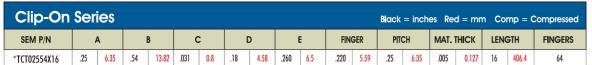


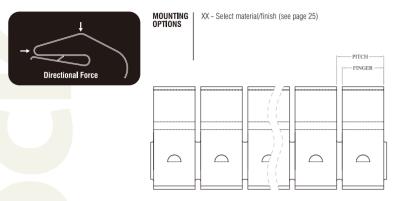

Clip-On	Ser	ies											Black	= inch	es Re	d = mn	n Co	mp = 0	Compressed
SEM P/N	,	4		В	(;)	E		FING	GER	PIT	СН	MAT.	THICK	LENG	∋TH	FINGERS
*TCT22638X16	.26	6.7	.38	9.7	.026	0.65	.368	9.35	.265	6.72	.461	11.7	.50	12.7	.005	0.127	16	406.4	64

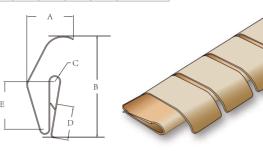


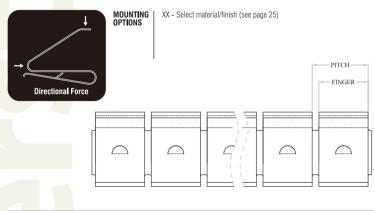


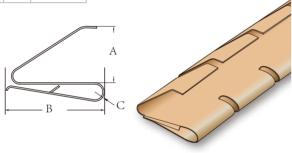
Clip-On	Ser	ies											Black	= inch	es Re	d = mr	n Co	mp = C	compressed
SEM P/N	,	4	ı	3	(;	[)	E		FIN	GER	PITO	CH	MAT.	THICK	LENG	∋TH	FINGERS
*TCA02638X16	.26	6.70	.38	9.70	.026	0.65	.368	9.35	.265	6.72	.210	5.33	.25	6.35	.005	0.127	16	406.4	64
*TCB02638X16	.26	6.70	.38	9.70	.026	0.65	.368	9.35	.283	7.20	.461	11.7	.50	12.7	.005	0.127	16	406.4	64



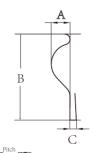


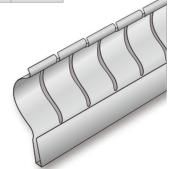


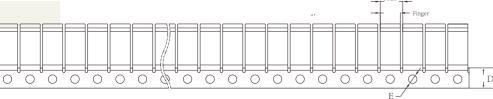




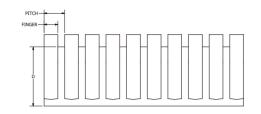
Clip-O	n Ser	ies						ı	Black =	inche	s Red	= mm	Con	np = C	ompressed
SEM P/N	Clip-On Series SEM P/N A B				(;	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS
*TCT01933X16	.19	4.85	.33	8.45	.03	0.8	.22	5.59	.25	6.35	.005	0.127	16	406.4	64

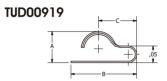


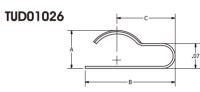


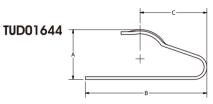

Clip-On	Ser	ies											Black	= inch	es Re	d = mr	n Coi	mp = C	compressed
SEM P/N	,	A		В С			ı)		E	FIN	GER	PIT	СН	MAT.	THICK	LENG	STH	FINGERS
*TCH0624107X16	.24	5.97	1.07	27.18	.06	1.65	-	-	.14	3.60	.34	8.51	.38	9.53	.005	0.12	16	409.79	43
*TCH0824107Y16	24	5 97	1.07	27 18	08	2 10	31	7 90	14	3 60	34	8 51	38	9 53	004	0.10	16	409 79	43

MOUNTING OPTIONS XX - Select material/finish (see page 25)





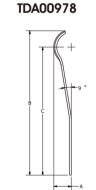

Contact Series

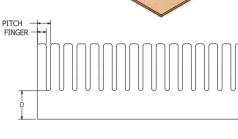

GASKETS

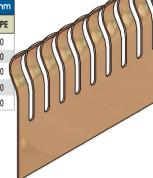
Contact gaskets are primarily used for grounding and shielding in high frequency applications. These gaskets provide engineers and designers with flexibility to solve their shielding and grounding issues. They are available in a variety of different lengths, widths and profiles. Standard factory length for Contact Series strips is 16". Individual contacts available in tape & reel packaging. Adhesive tape is optional - please consult factory.

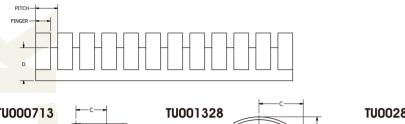

TUD0091	9	TUD	010	26	TUD	016	44	Cor	ntac	t Se	ries					В	lack = inches Re	ed = mm
SEM P/N	,	A		В	(2	ı)	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS/STRIP	TAPE
TUD00919X16	.09	2.29	.19	4.83	.11	2.79	.13	3.30	.040	1.02	.060	1.52	.004	.102	16	406	266	NO
TUD01026X16	.11	2.79	.26	6.60	.17	4.32	.22	5.59	.050	1.27	.075	1.90	.006	.152	16	406	213	NO
TUD01644X16	.16	4.06	.44	11.18	.24	6.10	.33	8.38	.062	1.57	.093	2.36	.010	.254	16	406	172	NO_

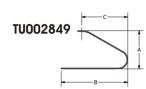
TD000978

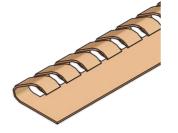

XX - Select material/finish (see page 25)


TD000434 TD000438 TD000453

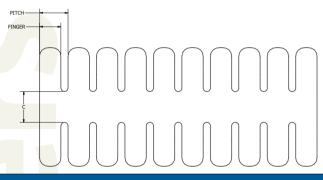


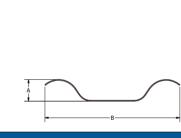

TD00	0438	TC	00004	453	TD0	0097	8 T	DA00	978	Со	ntac	t Seri	ies	Blac	k = inc	hes Red	= mm
1	A		В	(C	[)	FIN	GER	PIT	СН			LENG	STH	FINGERS/ STRIP	TAPE
.04	1.02	.34	8.63	.29	7.37	.13	3.30	.040	1.02	.060	1.52	.004	.101	16	406	266	NO
.05	1.27	.38	9.65	.31	7.87	.062	1.575	.050	1.27	.075	1.90	.006	.152	16	406	213	NO /
.05	1.27	.53	13.46	.47	11.94	.22	5.59	.050	1.27	.075	1.90	.006	.152	16	406	213	NO (
.05	1.27	.78	19.81	.66	16.76	.31	7.87	.062	1.57	.093	2.36	.010	.254	16	406	172	NO NO
.09	2.29	.78	19.81	.66	16.76	.31	7.87	.062	1.57	.093	2.36	.010	.254	16	406	172	NO
	.04 .05 .05	.04 1.02 .05 1.27 .05 1.27	.04 1.02 .34 .05 1.27 .38 .05 1.27 .53 .05 1.27 .78	.04 1.02 .34 8.63 .05 1.27 .38 9.65 .05 1.27 .53 13.46 .05 1.27 .78 19.81	A B C .04 1.02 .34 8.63 .29 .05 1.27 .38 9.65 .31 .05 1.27 .53 13.46 .47 .05 1.27 .78 19.81 .66	A B C .04 1.02 .34 8.63 .29 7.37 .05 1.27 .38 9.65 .31 7.87 .05 1.27 .53 13.46 .47 11.94 .05 1.27 .78 19.81 .66 16.76	A B C C .04 1.02 .34 8.63 .29 7.37 .13 .05 1.27 .38 9.65 .31 7.87 .062 .05 1.27 .53 13.46 .47 11.94 .22 .05 1.27 .78 19.81 .66 16.76 .31	A B C D .04 1.02 .34 8.63 .29 7.37 .13 3.30 .05 1.27 .38 9.65 .31 7.87 .062 1.575 .05 1.27 .53 13.46 .47 11.94 .22 5.59 .05 1.27 .78 19.81 .66 16.76 .31 7.87	A B C D FINO .04 1.02 .34 8.63 .29 7.37 .13 3.30 .040 .05 1.27 .38 9.65 .31 7.87 .062 1.575 .050 .05 1.27 .53 13.46 .47 11.94 .22 5.59 .050 .05 1.27 .78 19.81 .66 16.76 .31 7.87 .062	A B C D FINGER .04 1.02 .34 8.63 .29 7.37 .13 3.30 .040 1.02 .05 1.27 .38 9.65 .31 7.87 .062 1.575 .050 1.27 .05 1.27 .53 13.46 .47 11.94 .22 5.59 .050 1.27 .05 1.27 .78 19.81 .66 16.76 .31 7.87 .062 1.57	A B C D FINGER PIT .04 1.02 .34 8.63 .29 7.37 .13 3.30 .040 1.02 .060 .05 1.27 .38 9.65 .31 7.87 .062 1.575 .050 1.27 .075 .05 1.27 .53 13.46 .47 11.94 .22 5.59 .050 1.27 .075 .05 1.27 .78 19.81 .66 16.76 .31 7.87 .062 1.57 .093	A B C D FINGER PITCH .04 1.02 .34 8.63 .29 7.37 .13 3.30 .040 1.02 .060 1.52 .05 1.27 .38 9.65 .31 7.87 .062 1.575 .050 1.27 .075 1.90 .05 1.27 .53 13.46 .47 11.94 .22 5.59 .050 1.27 .075 1.90 .05 1.27 .78 19.81 .66 16.76 .31 7.87 .062 1.57 .093 2.36	A B C D FINGER PITCH MATI THI .04 1.02 .34 8.63 .29 7.37 .13 3.30 .040 1.02 .060 1.52 .004 .05 1.27 .38 9.65 .31 7.87 .062 1.575 .050 1.27 .075 1.90 .006 .05 1.27 .53 13.46 .47 11.94 .22 5.59 .050 1.27 .075 1.90 .006 .05 1.27 .78 19.81 .66 16.76 .31 7.87 .062 1.57 .093 2.36 .010	A B C D FINGER PITCH MATERIAL THICK .04 1.02 .34 8.63 .29 7.37 .13 3.30 .040 1.02 .060 1.52 .004 .101 .05 1.27 .38 9.65 .31 7.87 .062 1.575 .050 1.27 .075 1.90 .006 .152 .05 1.27 .53 13.46 .47 11.94 .22 5.59 .050 1.27 .075 1.90 .006 .152 .05 1.27 .78 19.81 .66 16.76 .31 7.87 .062 1.57 .093 2.36 .010 .254	A B C D FINGER PITCH MATERIAL THICK LENG THICK .04 1.02 .34 8.63 .29 7.37 .13 3.30 .040 1.02 .060 1.52 .004 .101 16 .05 1.27 .38 9.65 .31 7.87 .062 1.575 .050 1.27 .075 1.90 .006 .152 16 .05 1.27 .53 13.46 .47 11.94 .22 5.59 .050 1.27 .075 1.90 .006 .152 16 .05 1.27 .78 19.81 .66 16.76 .31 7.87 .062 1.57 .093 2.36 .010 .254 16	A B C D FINGER PITCH MATERIAL THICK LENGTH .04 1.02 .34 8.63 .29 7.37 .13 3.30 .040 1.02 .060 1.52 .004 .101 16 406 .05 1.27 .38 9.65 .31 7.87 .062 1.575 .050 1.27 .075 1.90 .006 .152 16 406 .05 1.27 .53 13.46 .47 11.94 .22 5.59 .050 1.27 .075 1.90 .006 .152 16 406 .05 1.27 .78 19.81 .66 16.76 .31 7.87 .062 1.57 .093 2.36 .010 .254 16 406	A B C D FINGER PITCH MATERIAL LENGTH FINGERS STRIP

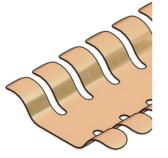



Contact Series

GASKETS

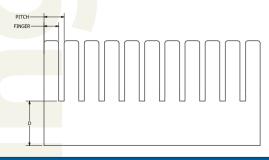


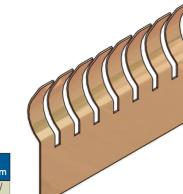




TU00071	3 1	ruoo	132	8	TUOC	284	9	Cor	ntac	t Se	ries					Ві	lack = inches Re	ed = mm
SEM P/N	,	A		В	(0	ı)	FIN	GER	PİT	СН	MAT.	THICK	LEN	GTH	FINGERS/STRIP	TAPE
TU000713X16	.07	1.78	.13	3.30	.07	1.78	.09	2.29	.040	1.02	.060	1.52	.004	.102	16	406	266	NO
TU001328X16	.13	3.30	.28	7.11	.16	4.06	.23	5.84	.095	2.41	.135	3.43	.010	.254	16	406	118	NO
TU002849X16	.28	7.11	.49	12.45	.34	8.64	.38	9.65	.125	3.17	.187	4.75	.006	.152	16	406	85	NO

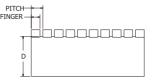
XX - Select material/finish (see page 25)

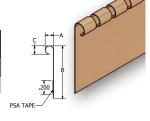


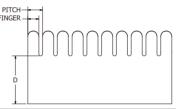


TR20117	8 (oni	tact	Ser	ries									В	ack = inches R	ed = mm
SEM P/N	,	4	-	B C FINGER PITCH MAT. THICK LENGTH FINGERS/STRIP TAPE												
TR201178X16	.13	3.30	.78	19.81	.20	5.08	.140	3.56	.187	4.750	.005	.127	16	406	86	NO

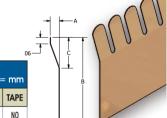
XX - Select material/finish (see page 25)

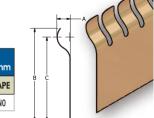



TS00119	0 (Con	tac	t Se	ries									Bla	ck = ir	nches	Red = mm
SEM P/N	,	4	ı	В	(С	I)	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS/ STRIP
TS01190X16	.11	2.79	.90	22.86	.66	16.76	.38	9.65	.125	3.17	.172	4.37	.010	.254	16	406	93

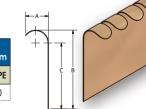

XX - Select material/finish (see page 25)

TRS0127	5 C	ont	act	Ser	ies										Black	k = inc	ches Red =	= mm
SEM P/N	,	4	ı	В	(0	ı)	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS/ STRIP	TAPE
TRS01275X16	.12	3.05	.75	19.05	.12	3.05	.65	16.51	.140	3.56	.187	4.75	.005	.127	16	406	85	YES




TRB0089	2 C	ont	act	Ser	ies										Bla	ck = ir	nches Red :	= mm
SEM P/N	,	4	I	3		0	ı)	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS/ STRIP	TAPE
TRB00892X16	.09	2.29	.92	23.37	.30	7.62	.61	15.49	.140	3.56	.187	4.75	.005	.127	16	406	85	NO

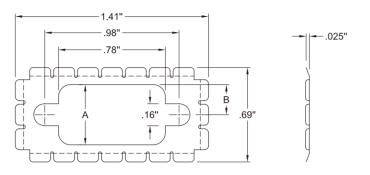
XX - Select material/finish (see page 25)


TRC0089)2 (Con	tac	t Se	ries										Bla	ck = ir	ches Red =	= mm
SEM P/N	,	Ą	ı	В	(0	ı)	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS/ STRIP	TAPE
TRC00892X16	.09	2.29	.92	23.37	.30	7.62	.63	16.00	.140	3.56	.187	4.75	.005	.127	16	406	85	NO

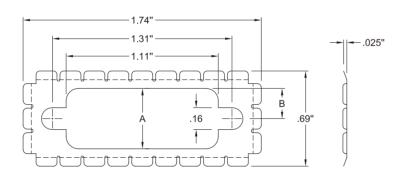
XX - Select material/finish (see page 25)

TRA0118	9 C	ont	act	Sei	ries										Bla	ck = ir	nches Red :	= mm
SEM P/N	,	4		В	(С	ı)	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS/ STRIP	TAPE
TRA01189X16	.13	3.30	.89	22.61	.81	20.57	.60	15.24	.140	3.56	.187	4.75	.005	.127	16	406	85	NO

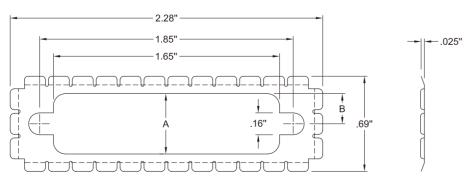
XX - Select material/finish (see page 25)

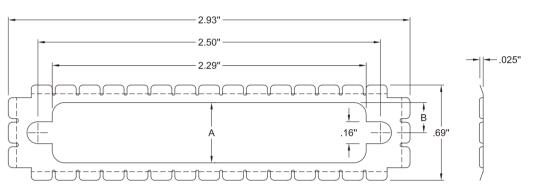

TRR0227	7 C	ont	act	Sei	ries										Bla	ck = iı	nches Red :	= mm
SEM P/N	,	4	ı	В	(0	ı)	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS/ STRIP	TAPE
TRR02277X16	.23	5.84	.77	19.56	.64	16.26	.62	15.75	.140	3.56	.187	4.75	.005	.127	16	406	85	NO

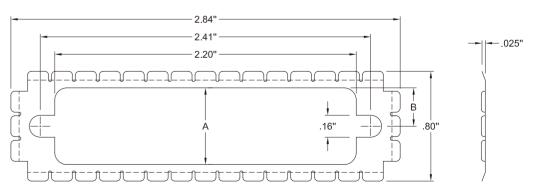
Other dimensions available upon request, please contact your SEM representative.



Pin D Connectors

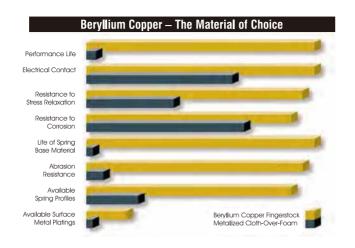

Π9DXX 9 F	in Connector-	.004" Th	ick
Part Number	Material	A	В
TT9D01	Stainless Steel	.44"	.22"
TT9D21	Beryllium Copper	.44"	.22"
TT9D02	Stainless Steel	.35"	.18"
TT9D22	Beryllium Copper	.35″	.18"

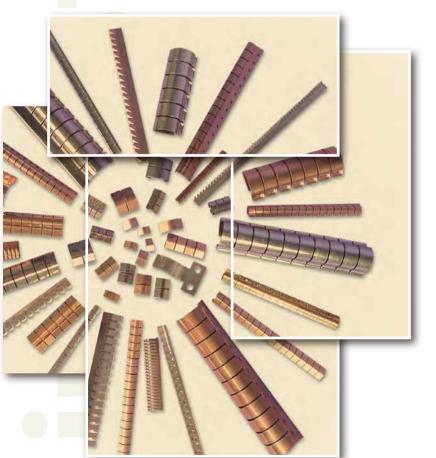

Π15DXX 1	5 Pin Connect	or004"	Thick
Part Number	Material	А	В
TT15D01	Stainless Steel	.44"	.22"
TT15D21	Beryllium Copper	.44"	.22"
TT15D02	Stainless Steel	.35"	.18"
TT15D22	Beryllium Copper	.35″	.18"


TT25DXX 2	5 Pin Connect	or004"	Thick
Part Number	Material	A	В
TT25D01	Stainless Steel	.44"	.22"
TT25D21	Beryllium Copper	.44"	.22"
TT25D02	Stainless Steel	.35"	.18"
TT25D22	Beryllium Copper	.35″	.18"

ТТ37DXX 3	7 Pin Connec	tor004"	Thick
Part Number	Material	A	В
TT37D01	Stainless Steel	.44"	.22"
TT37D21	Beryllium Copper	.44"	.22"
TT37D02	Stainless Steel	.35"	.18"
TT37D22	Beryllium Copper	.35"	.18"

TT50DXX 50 Pin Connector004" Thick					
Part Number	Material	A	В		
TT50D01	Stainless Steel	.55"	.28"		
TT50D21	Beryllium Copper	.55"	.28"		
TT50D02	Stainless Steel	.45"	.23"		
TT50D22	Beryllium Copper	.45″	.23"		




Application of Fingerstock Gaskets

EMI designers know and trust the consistent performance of Fingerstock (BeCu) gaskets. To date, BeCu yields the best electrical spring contact available in this industry. The beryllium copper mills have well established techniques and for decades have produced BeCu alloys per ASTM, SAE, JIS, and DIN specifications.

SEM uses only proven technology in creating beryllium copper springs, contacts and gaskets. Beginning with Alloy 25 (1/4 hard) BeCu, we stamp, form, and post heat-treat to a hardness of 340 to 390 DPH. This process is preferred in the EMI shielding industry because it has proven to produce the best electrical spring contacts. SEM BeCu EMI shielding gaskets are the most reliable in the industry.

SEM manufactures a wide variety of standard styles and sizes of BeCu gaskets. These gaskets operate in spaces from .010 inches up to .410 inches. Using BeCu materials as thin as .002 inch, we also offer many styles as soft gaskets that provide the low compression force needed in many applications. SEM also designs and manufactures custom spring contacts and gaskets.

FINGERSTOCK GASKETS DO TWO THINGS VERY WELL:

- Their mechanical spring characteristics far surpass all other gaskets in the industry.
- 2. They offer the highest EMI shielding effectiveness.

SEM has been designing and manufacturing Fingerstock Gaskets since the early days of the computer and electronics industries. We combine these years of manufacturing and EMI experience with one key ingredient – the needs of the customer.

Our innovative Fingerstock Gasket designs are a direct result of our experience and customer input, Our Compact PCI line of EMI Gaskets is an example of a design that was driven by the needs of a customer and evolved into a line of gaskets that meet all the requirements for Compact PCI faceplate standards while providing superior mechanical and shielding performance.

SEM offers many standard off-the-shelf Fingerstock Gaskets as well as the engineering and custom manufacturing experience to help you solve your application. Whether you need one prototype or a large quantity order, our team at SEM is available to respond to your needs.

Ordering Information

When placing an order or requesting a quotation, please give part number, your required finish I.D. from the chart below, and required length.

PART NUMBER EXAMPLE:			
Stock Item	Finish Code	Length	
TRHS1132	– T –	16	

The above example is the "Slot Mount Series" gasket shown on page 7. The height is .11 inch and the width is .32 inch. The "-S-" indicates a soft gasket. The "T" indicates a bright tin finish. See list below for available finishes. This part is available in lengths of 16 inches. Consult factory for custom lengths or for availability in 25' coils.

Available Plating Finishes:				
Finish Type	Applicable Specifications	SEM Finish Code		
Bright Finish	-	В		
Bright Tin	ASTM B-545, CLASS A	T		
Satin/Matte Tin	ASTM B-545, CLASS A	T*		
Electro-less Nickel RoHS	ASTM B-733, SC 1, CLASS 1	N		
Zinc/Chromate Clear	ASTM B-633, SC1, TYPE III	I		
Zinc/Chromate Yellow	ASTM B-633, SC1, TYPE II	γ		
Clear Cadmium Chromate	ASTM B-766, CLASS 5, TYPE III	C		
Yellow Cadmium Chromate	ASTM B-766,CLASS 5, TYPE II	(*		
Bright Silver	ASTM B-700, TYPE 2, GRADE B, CLASS N	A		
Satin/Matte Silver	ASTM B-700, TYPE 2, GRADE A, CLASS N	A*		
Gold	ASTM B-488, TYPE I, CODE C, CLASS 1.25	G		

Standard plating finish is .0001 inch (.0025 mm) minimum. Plating processes and thicknesses may be varied to meet customer needs. Standard plating finish for gold is .00005 inches. See adjacent list of available finishes and consult factory for additional options.

Adhesive Mounting of EMI Gaskets

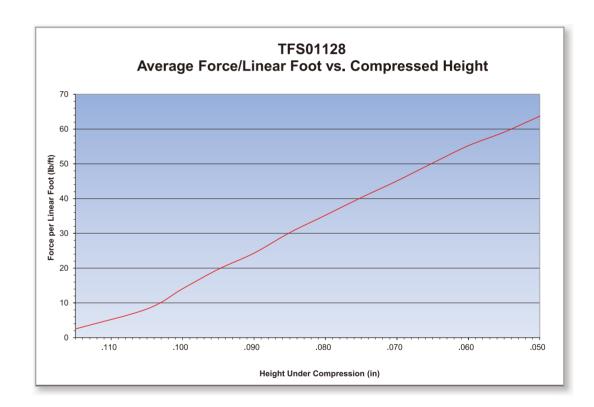
SEM tape mounted BeCu gaskets offer pressure-sensitive, double-sided adhesive for strong bonding to a wide variety of surface conditions, Ideal for all-purpose contact strips used in metal cabinets and electronic enclosures and is unaffected by temperatures from -67 to $+250^{\circ}$ F (-55 to 121° C).

Simply follow these four easy steps:

- 1. Remove all grease and oily residue with a solvent such as isopropyl alcohol/water mixture (rubbing alcohol) or heptane. Dry and smooth the mounting surface with emery cloth if necessary.
- 2. Peel off the protective paper backing from the 3M adhesive tape.
- 3. Place the gasket in correct position. Press firmly to ensure a good bond to surface. Avoid repositioning, which might impair the effectiveness of the adhesive or may bend or kink the strip. NOTE: On strips where fingers cover the solid portion of the gasket, pressure may be applied by inserting a mandrel in the strip and pressing down.
- 4. At room temperature approximately 50% of the ultimate strength will be achieved after 20 minutes, 90% after 24 hours, and 100% after 72 hours. In some cases bond strength can be increased and ultimate bond strength can be achieved more quickly by exposure of the bond to elevated temperature, e.g., 150°F (66°C) for 1 hour.

The SEM family of 3M taped shielding gaskets is solvent, moisture and temperature tolerant, and performs well in shear/wipe and compression applications of all kinds. The 3M adhesive meets a number of specs including Mil Standard. For further information please consult the factory.

Metals Galvanic Compatibility Chart


Group	roup Metallurgical Category		Compatible Surface Finishes						
Number			Gold	Silver	Nicke l	Be-Cu	Tin	Sn-Pb	Zino
1	Gold, solid and plated, Wrought platinum, graphite carbon	.00							
2	ente, sono ano pianos, mosgin pianiani, grapino sa son	.05							
3	Rhodium plating	.10							
4		.15							
5	Silver, high-silver alloys	.20							
6		.25							
7	Nickel, nickel-copper alloys, titanium, titanium alloys, Monel	.30							
8	Beryllium Copper, low brasses or bronzes, silver solder, copper, Ni-Cr alloys, austenitic corrosion resistant steels, most chrome-moly steels, specialty high-temp stainless steels	.35							
9	Commercial yellow brasses and bronzes	.40							
10	High brasses and bronzes, naval brass, Muntz metal	.45							
11	18% Cr type corrosion resistant steels, common 300 series stainless steels	.50							
12	10% of type condition resistant steers, common 300 series staniless steers	.55							
13	Chromium or tin plating: 12% Cr type corrosion resistant steels, most 400 series stainless steels, i.e., 410 and some cast stainless steels	.60					П		
14	Terreplate, tin-lead solder	.65							
15	Lead; high-lead alloys	.70							
16	- Wrought 2000 series aluminum alloys	.75							
17		.80							
18	Wasseld a brain and a Brain and a Cooperation and ALC: all an E000 and a storain	.85							
19	Wrought aluminum alloys except 2000 series cast Al-Si alloys, 5000 series aluminum	.90							
20		.95							
21		1.00							
22	Cast aluminum alloys other than Al-Si; cadmium plating	1.05							
23		1.10							
24		1.15							
25	Hot Dipped galvanized or electrogalvanized steel	1.20							ı
26		1.25							ı
27		1.30							ı
28		1.35							
29		1.40							
30	Wrought ring, ring die gest alleus	1.45							
31	Wrought zinc; zinc die cast alloys	1.50							
32		1.55							
33		1.60							
34		1.65							
35		1.70							
36	Wrought and cast magnesium alloys	1.75							
37	whought and east magnesium alloys	1.80							
38	Beryllium	1.85							

^{*}Harsh Environment .10 volts Max *Normal Environment .25 volts Max. *Office Environment .50 volts Max

Compression / Deflection Performance

SEM Part No.	Design Compressed Height	Compression Force (lbs./linear ft.)
TT000323	.018 (.46)	25
TT000634	.049 (1.24)	33
TT200650	.049 (1.24)	43
TUD00919	.072 (1.83)	30
TRH01132	.035 (.89)	34
TC041145	.090 (2.29)	19

SEM Part No.	Design Compressed Height	Compression Force (lbs./linear ft.)
TDT01445	.098 (2.49)	24
TAH02260	.140 (3.56)	25
TRH02260	.070 (1.78)	48
TFSC2376	.130 (3.30)	34
TC072599	.140 (3.56)	36
TFS02578	.150 (3.81)	36

The data presented is based on testing and to our knowledge is accurate and true. Since applications, test methods, and test procedures may vary, we recommend that users of our products perform their own test to assure the suitability of these specific applications. We offer no product warranty, either expressed or implied, except that any product proven defective will be replaced. Freedom from present or future patent infringement cannot be guaranteed, nor can the suitability of our products for specific applications.

